

Meta-Analysis of the Association Between Birth Weight and ADHD

Aspen Makkar^{1*}, Ryan A. Manning^{1*}, Michael Vargas¹, Arielle Plavnick¹, Olivia Einbund¹, Valerie S. Knopik, PhD², & Taylor F. Smith, PhD^{1,2}

1. Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA USA

2500-3000

2. Division of Behavioral Genetics, Rhode Island Hospital; DPHB, Brown University, Providence, RI USA * Denotes co-first authors

Introduction

- Lower birth weight is among the strongest identified risk factors for Attention-Deficit/ Hyperactivity Disorder (ADHD)
- However, the strength of association between lower birth weight and ADHD varies across studies
- Therefore, there is a critical need to identify factors that contribute to variability in the association between lower birth weight and ADHD

Objectives

- Meta-analysis examining the strength of the association between lower birth weight and ADHD across studies
- Examine sample and methodological factors which influence the relationship between lower birth weight and ADHD

Methods

- Databases: PubMed, EBSCO, Science Direct, and Web of Science
- Search terms: (ADHD OR Hyperkinetic OR "attention deficit" OR inattentiv* OR hyperactiv* OR impulsiv*) AND ("Birth Weight" OR birthweight OR LBW OR IUGR OR SGA OR growth restrict* OR "fetal growth" OR "Intrauterine Growth" OR "Gestational age" OR Prematur*)
- Review Process: Abstract review, full-text review, and data extraction was completed independently by two co-authors.

Inclusion Criteria:

- 1. Prospective study (case-control or cohort) with individuals born with lower birth weight (<3000g) and/or lower gestational age
- 2. Measure of birth weight
- 3. ADHD diagnostic status, ADHD symptom severity OR inattention and hyperactivityimpulsivity behavioral measure
- 4. Sufficient data to calculate effect size between birth weight and ADHD risk
- Exclusion Criteria: Overlapping samples, non-English language publication, family-based design, retrospective study, and biased control sample

Study Selection

Figure 1. Flow of information through meta-analytic review (adapted from Moher et al., 2009)

Meta-Analysis

- Random-effects meta-analysis
 - Cohen's d and relative risk (RR) were calculated for each sample and converted into odds ratio (OR)
 - Mixed-effects meta-regression analyses (unrestricted maximum likelihood) examined the influence of moderating factors
- Q and I² assessed between-study heterogeneity
- Publication bias assessed with Egger's test and visual inspection of funnel plot
- All analyses conducted with CMA.V2

Results

- A total of 40 studies and 54 independent samples were included in the meta-analysis.
- Across all samples the pooled OR = 2.15 (1.83-2.51; p<.01). Effect sizes were also examined based on severity of lower birth weight (see Table 1).
- There was significant variability in the strength of association between lower birth weight and ADHD across studies (Q = 273.98; df = 53; p < .01; $I^2 =$ 80.66).
- Egger's test for publication bias was significant ($t = \frac{1}{2}$ 6.05, p < .01), suggesting the presence of positive publication bias (see Figure 4).

Results (continued)

Table 1. Pooled effect sizes for lower birth weight and ADHD

Cohen's d

Birth weight	n	d	CI	р					
All Studies	20	0.96	0.57-1.35	<.001*					
<1000	3	2.04	1.15-2.93	<.001*					
<1500	7	0.87	0.30-1.45	.003*					
<2000	0	-	_						
<2500	0	-							
2500-3000	0	-							
		Relative Risk							
Birth weight	n	RR	CI	p					
All Studies	34	2.27	1.87-2.77	<.001*					
<1000	6	2.31	1.2-4.12	.005*					
<1500	8	2.32	1.71-3.13	<.001*					
<2000	3	1.53	1.29-1.81	<.001*					
<2500	7	3.03	1.47-6.22 0.00						
2500-3000	2	1.29	0.79-2.09	0.3					
		Odds Ratio							
Birth weight	n	OR	CI	р					
All Studies	54	2.15	1.83-2.51	<.001*					
<1000	9	2.51	1.68-3.75	<.001*					
<1500	15	2.16	1.63-2.88 <.00						
<2000	3	1.59	1.32-1.90 <.001						
<2500	7	3.45	1.59-7.44	0.001*					

Note. Birth weight classification based on sample inclusion criteria. All studies also includes samples selected based on lower gestational age (but were also of lower birth weight).

1.31

0.79-2.16

0.3

Table 2. Meta-regression of log *OR* on sample level moderators

Moderator	Y 1	SE	Z	df	p			
Birth year	0.02	0.01	1.73	40	30.0			
Age at assessment (years)	0.01	0.02	0.35	46	0.72			
Gender index	0.94	0.31	3.02	35	<.01			
Birth weight (case <i>M</i>)	-4.3E-04	2.7E-04	-1.55	36	0.12			
Gestational age (case M)	-0.11	0.05	-2.44	34	0.01			
ADHD measurement type	0.16	0.11	1.52	52	0.13			
Note. γ ₁ = meta-regression coefficient. Gender index = (male cases/female cases)/								

(male controls/female controls). ADHD measurement coding: 1= a single rating scale

Figure 2. Study log *OR* on mean gestational age for cases

Figure 3. Study log *OR* on gender index

to 4=a structured diagnostic interview and rating scale.

Results (continued)

Figure 4. Funnel plot

Discussion

studies. Filled dots represent imputed missing studies

- The pooled *OR* = 2.15, suggesting that lower birth weight is associated with a 2.15 fold increase in the odds of developing ADHD (or high levels of ADHD symptoms).
- Across samples there is a dose-response relationship between lower gestational age (but not birth weight) and the association between birth weight and ADHD
- Failing to match cases and controls (i.e., on gender) and publication bias likely inflated the association between lower birth weight and ADHD.

Limitations

- Heterogeneous sample inclusion criteria
- Gestational age confound
- Publication bias

Future Directions

- Examine the influence of multiple gestation on the association between birth weight and ADHD
- Investigate non-shared environmental factors that underlie the relationship between lower birth weight and ADHD risk (Groen-Blokhuis et al., 2011; Ficks et al., 2013; Peterson et al., 2015)
- Progress towards the development of preventative interventions for ADHD in individuals exposed to prenatal risk